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Abstract

Extreme events in financial markets are often generated by shocks
that are generated within the system, rather than those that arrive
from outside the system. The combination of risk-sensitive behav-
ior rules and the coordinated actions implied by mark-to-market ac-
counting can result in outcome distributions with fat tails, even if the
fundamental shocks are Gaussian. We illustrate such “endogenous
extreme events” through the pricing density resulting from dynamic
hedging of options and the “flash crash” of May 2010.
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1 Introduction

The global financial crisis of 2007-9 and the market turmoil that accompa-
nied it have renewed interest in understanding the nature and consequence
of extreme events. Financial crises are often characterized by large price
changes, but large price changes by themselves need not constitute a crisis.
Public announcements of important macroeconomic statistics, such as the
monthly U.S. employment report, are sometimes marked by large, discrete
price changes at the time of announcement. However, such price changes are
arguably the signs of a smoothly functioning market that is able to incorpo-
rate new information quickly. The market typically finds composure quite
rapidly after such discrete price changes as the new information is absorbed
by the market.

Instead, we are interested in episodes where shocks are amplified by the
actions of the economic agents themselves. Rather like a tropical storm over
a warm sea, crisis episodes appear to gather more energy as they develop. As
financial conditions worsen, the willingness of market participants to bear risk
seemingly evaporates. The global financial crisis that erupted in the summer
of 2007 served as a laboratory for many such distress episodes.

Our objectives are somewhat different from the related asset pricing in-
quiry that has asked whether “rare disasters” can account for the risk pre-
mium puzzle in asset prices or the returns associated with carry trades.!
Rather than asking whether the prices prior to the crisis can be rationalized,
we address the crisis dynamic itself. Although we do not address the asset
pricing consequences directly, our discussion complements the asset pricing
inquiry by airing the possible mechanisms that may account for such extreme
events. Indeed, our contribution is to show that “rare disasters” are often
man-made rather than acts of Nature.

Our approach also differs from the statistical approach typified by Ex-
treme Value Theory (EVT). Economists have long recognized that the Gaus-

'Rietz (1988), Barro (2006) and Weitzman (2007) address the risk premium in asset
prices through the lens of rare disasters. Fahri and Gabaix (2010) argue that the possibility
of rare disasters can account for the excess returns associated with currency carry trades.
In a series of papers, Burnside, Eichenbaum, Kleshchelski and Rebelo (2006, 2007, 2008)
have explored the extent to which conventional asset pricing models can explain the returns
to carry trade positions, and point to the importance of rare jumps in the stochastic
discount factor itself - a form of peso problem. Plantin and Shin (2010) model the ”up
by the stairs, down by the elevator” price dynamics of carry trade currencies.



sian distribution is not sufficient for describing economic variables, since at
least the work of Vilfredo Pareto (Pareto (1898)). Pareto blazed the trail
on the study of “fat tails” of probability densities based on the concept of
power laws. See, for example, Embrechts et al. (1996) for a survey of EVT
and power laws.

While Pareto applied his research to income distributions, such analysis
equally applies to returns and financial assets. Mandelbrot (1963) and Fama
(1965) showed that financial returns exhibit fat tails, with Jansen and de
Vries (1991) the first to apply EVT to finance. Since then we have seen a
large number of studies.

EVT provides many useful insights on extreme market outcomes. How-
ever, there are two key factors that limit the application of EVT in finance.
First, it only applies relatively far out in the tails, generally for events with
probability much less than 1%, and it can be quite challenging identifying
where exactly it applies. Secondly, it assumes the underlying data is iden-
tically and independently distributed, or that the tails exhibit a restricted
form of dependence. If the underlying data is subject to apparent structural
breaks, EVT becomes less relevant. This is exactly a feature of financial
returns.

Our approach is different, and emphasizes the man-made nature of ex-
treme events. The main theme of our paper can be encapsulated in terms
of the dual role of prices. By “dual role”, we mean that prices not only
reflect the underlying economic fundamentals, they are also an imperative to
action. That is, prices induce actions on the part of the economic agents. If
some actions are the consequence of binding constraints and exert harmful
spillover effects on others, then price changes can bring about amplifying
spillover effects that disrupt the smooth working of the market, and some-
times shut down the market completely. Financial crises could almost be
defined as episodes where the allocational role of prices break down. The
action-inducing role of price changes introduce distortions and cause an am-
plified spiral of price changes and actions that can cause great damage along
the way:.

In order to motivate our discussion, it is useful to begin with an example
from outside economics and examine the case of the Millennium Bridge, first
discussed in Danielsson and Shin (2003). The discussion below draws on
Shin (2010).



Lessons from the Millennium Bridge

The Millennium Bridge in London was constructed as part of the Millennium
celebrations in the year 2000. It was the first new crossing over the River
Thames for over a hundred years. The sleek 325 metre-long structure used
an innovative “lateral suspension” design, built without the tall supporting
columns that are more familiar with other suspension bridges. The bridge
was opened by the Queen on a sunny day in June, and the press was there
in force. Many thousands of people turned up after the tape was cut and
crowded on to the bridge to savor the occasion. However, within moments of
the bridge’s opening, it began to shake violently. The shaking was so severe
that many pedestrians clung on to the side-rails, as shown in video news clips
of the opening day.? The bridge was closed shortly after the opening and
was to remain closed for 18 months.

When engineers used shaking machines to send vibrations through the
bridge, they found that horizontal shaking at 1 hertz (that is, at one cycle
per second) set off the wobble seen on the opening day. Now, this was an
important clue, since normal walking pace is around two strides per second,
which means that we’re on our left foot every second and on our right foot
every second. Walking produces a vertical force (depending on our body
mass) of around 750 Newtons or 165 pounds at 2 hertz. However, there
is also a small sideways force caused by the sway of our body mass due to
the fact that our legs are slightly apart. Anyone who has been on a rope
bridge should be well aware of the existence of this sideways force. This
force (around 25 Newtons or 5.5 pounds) is directed to the left when we are
on our left foot, and to the right when we are on our right foot. This force
occurs at half the frequency (or at 1 hertz). This was the frequency that was
causing the problems.

But why should this be a problem? We know that soldiers should break
step before crossing a bridge. For thousands of pedestrians walking at ran-
dom, one person’s sway to the left should be cancelled out by another’s sway
to the right. If anything, the principle of diversification suggests that having
lots of people on the bridge is the best way of cancelling out the sideways
forces on the bridge.

Or, to put it another way, what is the probability that a thousand peo-
ple walking at random will end up walking exactly in step, and remain in

2http:/ /news.bbc.co.uk/hi/english /static/in_depth/uk/2000/millennium_bridge/default.stm.
See also the youtube video on http://www.youtube.com/watch?v=eAXVa__XWZ8



lock-step thereafter? It is tempting to say “close to zero”. After all, if
each person’s step is an independent event, then the probability of everyone
walking in step would be the product of many small numbers - giving us a
probability close to zero.

However, we have to take into account the way that people react to their
environment. Pedestrians on the bridge react to how the bridge is moving.
When the bridge moves from under your feet, it is a natural reaction to
adjust your stance to regain balance. But here is the catch. When the
bridge moves, everyone adjusts his or her stance at the same time. This
synchronised movement pushes the bridge that the people are standing on,
and makes the bridge move even more. This, in turn, makes the pedestrians
adjust their stance more drastically, and so on. In other words, the wobble of
the bridge feeds on itself. When the bridge wobbles, everyone adjusts their
stance, which makes the wobble even worse. So, the wobble will continue
and get stronger even though the initial shock (say, a small gust of wind) has
long passed.

Arup, the bridge’s engineers found that the critical threshold for the
number of pedestrians that started the wobble was 156. Up to that number,
the movement increased only slightly as more people came on the bridge.
However, with ten more people, the wobble increased at a sharply higher
rate.®> The wobble is an example of a shock that is generated and amplified
within the system. It is very different from a shock that comes from a storm
or an earthquake which come from outside the system. Stress testing on
the computer that looks only at storms, earthquakes and heavy loads on the
bridge would regard the events on the opening day as a “perfect storm”. But
this is a perfect storm that is guaranteed to come every day.

What does all this have to do with financial markets? Financial markets
are the supreme example of an environment where individuals react to what’s
happening around them, and where individuals’ actions affect the outcomes
themselves. The pedestrians on the Millennium Bridge are like modern banks
that react to price changes, and the movements in the bridge itself are rather
like price changes in the market. So, under the right conditions, price changes
will elicit reactions from the banks, which move prices, which elicit further
reactions, and so on.

The Millennium Bridge analogy serves to highlight the dual role of prices.

3http://www.arup.com/millenniumbridge/challenge /results.html. See also
http://www.youtube.com/watch?v=eAXVa__XWZ8
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Figure 1. Feedback in Financial Systems (Source: Shin (2010))

Not only are prices a reflection of the underlying economic fundamentals, they
are also an imperative to action. That is, prices induce actions on the part
of the economic agents. When actions are the result of binding constraints
and exert harmful spillover effects on others, then the double-edged nature
of prices exerts its biggest effect. The problem comes when the reliance
on market prices distorts those same market prices. The more weight is
given to prices in making decisions, the greater are the spillover effects that
ultimately undermine the integrity of those prices. =~ When prices are so
distorted, their allocational role is severely impaired. Far from promoting
efficiency, contaminated prices undermine their allocational role.

Flash Crash of May 2010

The non-linear effects of the endogenous risk type plausibly arise in algorith-
mic trading environments, which have emerged as a central issue in market
microstructure and the regulation of exchanges and trading platforms.

Algorithmic trading either has actions hard-coded into their programs
that directly lead to positive feedbacks, or the algorithms do not have such
a behaviour coded directly into the programmes but some higher level inter-
ventions by the controlling or the supervising entity effectively can decide to
overrule the algorithm, and thereby create the feedbacks.

As an example, consider the “flash-crash” epsiode of May 6th 2010, when
the US stock market was buffetted by unprecedented turbulence in a short
period in the afternoon of May 6th. SEC (2010) is the official report on the
episode from the US Securities and Exchange Commission. Irrespective of
whether or not the official version of the events of May 6th 2010 turns out
to be accurate and complete, it outlines a possible scenario whereby some
algorithms may directly create feedback effects due to a lack of common sense
in the coding.

In a nutshell, a simplified scenario would be as follows. An execution



algorithm by a investing firm is directed to sell a large number of securities.
The algorithm gauges the market impact it may have by looking at the
market volume and is instructed to sell more if the volume is higher. Whereas
in many market-sensitive trading stratgies it is prices that play the dual roles
of gauges of value as well as of imperatives to act, in this case volumes play
the dual role of indicators of intensity of transactions as well as the role of
imperatives to be followed.

The original large sale finds buyers, most likely high-frequency traders
(HFTs) given their speed advantage. If it turns out that there are no new real-
money investors stepping in, the algorithms of the lightly capitalized HFT's
that act as market makers may pass the securities around like a hot potato,
generating more volume. This volume then teases the original algorithm to
sell even more, closing the feedback loop until far out-of-the-money limit
orders are hit and the order books are emptied. The destabilizing feedback
loop in this instance has been brought about through the interaction of two
distinct algorithms. Diagrammatically,

general algo selling = HFT's pass the parcel, wait for real money investor

fr 4

execution algo sells more if volume is up <«  volume shoots up

There are many more such sources of endogenous risk in computer-based
trading, see for instance Shin and Zigrand (2011).

So far, the analogy between the Millennium Bridge example and the fi-
nancial market has been informal. In order to illustrate the effects in more
detail, we will now examine a specific case of endogenous amplification in
financial markets due to the dynamic hedging of options. Dynamic hedging
in general refers to the practice of active adjustment one’s portfolio so as
to leave the portfolio hedged against future shocks. The specific case we
examine is the dynamic hedging of options, drawing on the discussion in
Danielsson and Shin (2003) and Shin (2010).

2 Dynamic Hedging of Options

In the 1980s, specialized fund managers put into practice the principles that
underpin the Black and Scholes (1973) model for option pricing and set up
funds that became known as portfolio insurers. Bookstaber (2007) gives a
first-hand description from a practitioner on the scene at the time.
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Portfolio insurance attemps to replicate the payoffs that arise from hold-
ing a put option by trading actively in the market. A put option gives the
holder the right (but not the obligation) to sell a particular asset at a pre-
agreed price (the strike price, or exercise price) at a particular date in the
future (the expiry date). At the expiry date, the value of the put option is
large when the price of the underlying asset is far below the exercise price,
since the holder of the put can buy the underlying asset at the low prevailing
market price, and then sell it at the higher exercise price, pocketing the dif-
ference. When the price of the underlying asset is above the exercise price,
the holder of the option will not exercise the option, and the option will
expire worthless.

Before the expiry date, the option has a value that is above its value at
expiry, since the price S of the underlying asset at expiry is uncertain. FEven
if the current price S is above the strike price X, there is a chance that S
will drift lower below X before expiry. As long as this is a possibility, the
option has a positive value. The farther in the future is the expiry date, the
greater is the uncertainty, and the greater is the value of option for any given
price of the underlying asset today.* The value of a put option is increasing
when the price S falls. Also, the rate which the option increases in value is
itself increasing as S falls.

Replicating the payoff of a put option through dynamic hedging attempts
to position one’s portfolio in reaction to price changes in order to mimic the
payoffs from a put option at expiry. There are two requirements. Since
a put option pays out more when price is low, this means maintaining a
short position in the underlying asset. Since the slope of the put option’s
value becomes steeper as the price falls, this means taking an even larger
short position when the underlying asset falls in price. In other words,
dynamic hedging dictates that when the price falls, you sell more of the asset.
Replicating a put option through dynamic trading entails a “sell cheap, buy
dear” strategy.

Why might it make sense to replicate a put option, rather than just
buying a put option? Options that trade in organized exchanges are limited
to certain well-established markets, and only for relatively short expiry dates.
For very long-dated options, or for specific portfolios, dynamic replication
may be the only avenue open to an investor if he/she wishes to attempt to

4This may not be true if the risk-free interest rate is very high, but we assume for the
sake of simplicity that the risk-free rate is zero for the rest of the section.



hedge the value of an investment holding. One could approach one of the
large banks or securities firms and ask it to sell an option to you. But
you will need to pay for the privilege of buying the option. For instance, a
fund manager who has sold long-term retail funds that guarantee the initial
investment, the implicit put must be replicated in some way.

For the bank that sells you the option, it is incurring the liabilities gen-
erated by having sold the option. For this reason, even if the bank sells you
an over-the-counter (OTC) option tailored to your needs, this does not mean
that dynamic hedging becomes irrelevant. Once the bank sells the option
to you, the bank is holding a risky liability, and will want to hedge this risk.
The burden of replication is placed on the bank that has sold the option.
So, as long as some party has to bear the risk of the liabilities generated by
the option, dynamic hedging becomes relevant.

2.1 Delta Hedging

In its simplest form, dynamic hedging relies on the delta of the option. To
fix ideas, focus on the task of replicating the payoff of a put option. The
delta of a put option is the rate of change of the put option price with respect
to the change in the price of the underlying asset. Thus, if P is the price of
the put option and S is the price of the underlying asset, the delta A is given
by A = dP/dS. For a put option, its delta lies between —1 and 0. Black
and Scholes in their famous paper on option pricing noted that the portfolio
consisting of:
A underlying asset
{ —1 put option

is locally risk-free with respect to changes in S. This is because when the
price changes slightly, the gain from the holding of the underlying asset (given
by A) is matched by an exactly offsetting loss in the price of the put option
(—A). This insight is used in the derivation of the Black-Scholes formula
by arguing that the above portfolio must earn same return as the risk free
asset.

The delta of a put option can be pictured in Figure 2. The delta is the
slope of P with respect to S, and hence lies below the horizontal axis. The
delta goes to —1 as the price of the underlying security S falls, and tends to
0 as the price of the underlying security increases. As time progresses to the
expiry of the option, the price of the option gets closer to the kinked curve



Figure 2. Delta of Put Option

with the kink at the exercise price X. So, the delta behaves more like the
step function that jumps from —1 to 0 at exercise price X.

At expiry, there are two possible values of delta. If the option expires “in
the money” so that S < X, then we are on the negatively sloped part of the
curve so that A = —1. However, if the option expires “out of the money”,
we are on the flat part of the curve so that A = 0.

The payoff from the put option can be replicated by holding a suitable
portfolio of the underlying asset and cash, and adjusting the position over
time in response to realised outcomes. Suppose a trader starts with a cash
balance of P, and suppose that P is also the market price of the put option
that the trader wishes to replicate. With this wealth, the trader can either
purchase the put option itself, or purchase the portfolio given by:

A underlying asset (1)
—SA+ P cash

The value of this portfolio is also P, since the A units of the underlying asset
has price —SA. Remember that A is negative since the trader wishes to
replicate a put option. The portfolio given by (1) is financed by selling short
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PI

Figure 3. Delta following price change

|A| units of underlying asset at price S, and adding the proceeds to the cash
balance.

Now, suppose price changes to S’. The value of the portfolio at the new
price is

short asset cash
m +P—-SA
— PLA(S -9
~ P

where P’ is the price of the put option given price S’. Figure 3 illustrates
the change in the price of the portfolio following the price change, and how it
relates to the shift in the price of the put option itself. The trader manages
to approximate the wealth of a trader who starts out by holding the put
option itself, in the sense that the trader’s portfolio value moves along the
tangency line at the old price S. Since the approximation is linear, the
accuracy of the approximation is greater the smaller is the price change.
After the price change, the trader can repeat his procedure at the new

11



price S’. At the new price S’, the investor forms the new portfolio:

A/ underlying asset (@)
—S'A"+ P cash

which is affordable (approximately) given his new wealth of P’. Suppose that
the trader repeats this procedure of forming the new portfolio in response to
price changes so that he maintains a position of A in the underlying security,
and where the cash position adjusts as a result of the shift in the portfolio.
When the price falls, the delta becomes more negative, meaning that the
trader sells more of the underlying security, and thereby adding to the cash
balance by the amount of the dollar value of securities sold short in that
round. Conversely, if the price rises, then the delta becomes less negative,
meaning that the trader has to buy back some of the security, thereby dipping
into his cash balance to make the purchase. The cash balance will adjust in
this way as a result of new sales and purchases.

Proceeding in this way, let us suppose that the trader reaches the expiry
date of the option. There are two cases we need to consider, depending on
whether the option expires in the money or out of the money. If the option
expires in the money (i.e. when the price S is below the exercise price X),
we have A = —1, so that the portfolio given by (2) is

—1 underlying asset
S+(X—-29) cash

In this case, the trader has a balance sheet in which he has cash of S+(X — )
on the asset side, and 1 unit of the underlying security on the liabilities side.
The difference between the two is the equity of the trader. Since the price
of the underlying security is .S, the value of equity is

S+(X—-8) - § =X-38 (3)
asset liability

Another way to think about this is to imagine the trader buying back the
one unit of the security at expiry, at the price of S. With a cash balance of
S+ (X — S), paying out S leaves the trader with X — §'.

The second case is when the option expires out of the money. In this
case, the price of the underlying security S lies above the exercise price X.
So, the portfolio (2) takes the particular simple form:

0 underlying asset (4)
0 cash

12



In this case, the equity of the trader is zero. So, taking account of the two
possible cases taken by the trader’s portfolio at the expiration date, the final
value of the trader’s portfolio is the larger of X — S and zero. In other words,
the payoff at expiry of the trader who follows the strategy of keeping a delta
position in the underlying security is given by

max {X — 5,0}

But this payoff is exactly the payoff achieved by the alternative strategy for
the trader in which he pays P to buy one unit of the put option, and holds
it to expiry. In this way, the strategy of hedging by holding a delta position
in the underlying security enables the trader to mimic the payoff of buying
a put option and holding it.

2.2 Numerical Example

Let us first examine a numerical example for the case where returns are given
exogenously - that is, unaffected by the actions of the traders. This is the
case made famous by Black and Scholes (1973) and examined in textbooks,
such as Hull (2009). Suppose the initial price of the underlying security is
100. A trader wishes to replicate the payoff of the put option with strike
price 90 by rebalancing his portfolio at the end of each week. We suppose
that the trader starts with a zero cash balance, but can borrow and lend at
some risk-free rate r. The option expires in 20 weeks. Suppose also that
the process governing the evolution of the security’s price is such that the
Black-Scholes (1973) option pricing formula is valid.

According to the Black-Scholes formula for option pricing, the delta of a
put option at time ¢ is given by

N(d) -1

where N (.) is cumulative distribution function of the standard normal, and
dy is given by

In (£) + (r+"§> (T —t)
ovT —1

where X is the exercise price of the option, S is the price of underlying asset,
r is the risk-free interest rate and 7T is the expiry date of the option and o is

d1:
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Table 1. No Feedback, In the Money

Week T-t Random Price log(p/x) d 1 Delta Purchases Cash Flow Cash Stock
0 0.385 100.000 0.105 0.757 -0.224 -0.224 22.450 22.450
1 0.365 -0.026  97.378 0.079 0.597 -0.275 -0.051 4.944 27.394
2 0.346 0.014 98.738 0.093 0.704 -0.241 0.034 -3.397 23.997
3 0.327 -0.046  94.213 0.046 0.392 -0.348 -0.107 10.065 34.062
4 0.308 0.015 95.617 0.061 0.506 -0.306 0.041 -3.944 30.118
5 0.288 0.006  96.144 0.066 0.559 -0.288 0.018 -1.764 28.353
6 0.269 0.021  98.138 0.087 0.732 -0.232 0.056 -5.502 22.851
7 0.250 -0.047  93.485 0.038 0.366 -0.357 -0.125 11.684 34.535
8 0.231 0.024  95.685 0.061 0.570 -0.284 0.073 -6.955 27.580
9 0.212 -0.037  92.180 0.024 0.266 -0.395 -0.111 10.227 37.807

10 0.192 -0.010  91.283 0.014 0.184 -0.427 -0.032 2.901 40.708
11 0.173 -0.048  86.910 -0.035  -0.284 -0.612 -0.185 16.054 56.762
12 0.154 -0.045  83.001 -0.081  -0.777 -0.781 -0.170 14.072 70.834
13 0.135 -0.037  79.944 -0.118  -1.246 -0.894 -0.112 8.977 79.811
14 0.115 -0.043  76.546 -0.162  -1.864 -0.969 -0.075 5.761 85.572
15 0.096 -0.020  75.005 -0.182  -2.312 -0.990 -0.021 1.557 87.129
16 0.077 0.044  78.313 -0.139  -1.971 -0.976 0.014 -1.093 86.036
17 0.058 -0.036  75.531 -0.175  -2.889 -0.998 -0.022 1.692 87.728
18 0.038 -0.047  71.989 -0.223  -4.530 -1.000 -0.002 0.139 87.867
19 0.019 0.011 72.788 -0.212  -6.105 -1.000 0.000 0.000 87.867
20 0.000 -0.035  70.236 -0.248 -1.000 0.000 0.000 87.867

standard deviation of return of the underlying security. The Black-Scholes
formula for the price for the put at ¢ is

P=Xe " TN (=dy) + S (N (dy) — 1)

where dy = d; — ov/T —t. For economy of notation, set r = 0. Quantities
such as the time to expiry 7" — ¢ and volatility o will be measured in units
of years. In the case we want to examine, there are 20 weeks to expiry, so
that the time to expiry at the initial date is 0.3846 years. The exogenous
returns are drawn from a normal density for weekly returns that is consistent
with a 25% yearly volatility 0.  The returns each week are assumed to
be independent. The annual standard deviation is converted to a weekly
standard deviation by dividing by the square root of 52, the number of weeks
in a year.

Table 1 shows draws where the returns are unfavorable to the security
value so that the put option ends up in the money. Initially, the price is
100, and the trader begins with a short position in the underlying security
of —0.2245. However, the return in the first week is —2.6%, lowering the
price to 97.38. The delta becomes more negative, at —0.2753, which is met
by the trader selling additional units of the risky security, and adding 4.94 to
the cash balance. At the end of the first week, the trader has a cash balance
of 27.39, as seen in the last column.

Proceeding in this way, the trader adjusts his portfolio at the end of each
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week in response to the weekly realised return. The random draws push the
security price down, so that at the end of the 20 weeks, the security price
ends up at 70.24. The option ends up in the money, and the delta goes to
—1 rapidly in the last few weeks. The cash balance at the end of the 20
weeks is 87.87.

At the end of the 20 weeks, the trader has a portfolio consisting of a cash
balance of 87.87 and a liability of one unit of the risky security. Since the
price of the security is 70.24 at that date, the equity of the trader is given by

87.87 —70.24 = 17.63

Having started off with a zero cash balance, 17.63 is the net gain from having
replicated the put option. We can compare this outcome to the alternative
that was open to the trader of buying one unit of the put option and then
waiting for the expiry of the option at the end of 20 weeks. The Black-
Scholes price of the option at date 0 with strike price 90 is 2.17. Meanwhile,
the option ends up in the money by the difference between 90 and 70.24.
Hence, the net gain to the trader is

90 —70.24 — 2.17 = 17.59

which is very close to the 17.63 that is made by the trader who uses delta
hedging to replicate the put option. In this particular numerical example,
the outcome of the delta hedging is extremely close to the outcome given by
buying and holding the put.

Delta hedging rests on being able to sell the security when the price falls,
and buying the security when its price rises. In other words, it is a strategy
that chases price moves up or down. The strategy rests on there being
someone who buys when you want to sell. However, when there is feedback
from the actions of traders to the price moves seen on the market, then
there is the potential for amplified responses, where price falls elicit more
selling, which pushes price down, which then elicits further selling. When
the conditions are ripe (on which more below), delta hedging can generate a
price spiral where selling and market dynamics create a feedback loop.

To illustrate such a possibility, let us examine a slightly modified version
of the example with a price feedback effect where sales and purchases impact
on price changes in the market. The idea is that selling creates downward
pressure on price and buying creates an upward pressure on price.
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Table 2. With Feedback, In the Money

Theoretical Actual Cash Cash
Week T-t Random Price Price Delta Purchases Flow Stock
0 0.385 100.000 100.000 -0.224 -0.224 22.450 22.450
1 0.365 -0.026 97.378 97.378 -0.275 -0.051 4.944 27.394
2 0.346 0.014 98.738 93.793 -0.362 -0.086 8.095 35.490
3 0.327 -0.046 94.213 81.400 -0.736 -0.374 30.480 65.969
4 0.308 0.015 95.617 52.133 -1.000 -0.264 13.759 79.728
5 0.288 0.006 96.144 38.662 -1.000 0.000 0.002 79.730
6 0.269 0.021 98.138 39.461 -1.000 0.000 0.000 79.730
7 0.250 -0.047 93.485 37.591 -1.000 0.000 0.000 79.730
8 0.231 0.024 95.685 38.475 -1.000 0.000 0.000 79.730
9 0.212 -0.037 92.180 37.066 -1.000 0.000 0.000 79.730
10 0.192 -0.010 91.283 36.705 -1.000 0.000 0.000 79.730
11 0.173 -0.048 86.910 34.946 -1.000 0.000 0.000 79.730
12 0.154 -0.045 83.001 33.375 -1.000 0.000 0.000 79.730
13 0.135 -0.037 79.944 32.145 -1.000 0.000 0.000 79.730
14 0.115 -0.043 76.546 30.779 -1.000 0.000 0.000 79.730
15 0.096 -0.020 75.005 30.160 -1.000 0.000 0.000 79.730
16 0.077 0.044 78.313 31.490 -1.000 0.000 0.000 79.730
17 0.058 -0.036 75.531 30.371 -1.000 0.000 0.000 79.730
18 0.038 -0.047 71.989 28.947 -1.000 0.000 0.000 79.730
19 0.019 0.011 72.788 29.268 -1.000 0.000 0.000 79.730
20 0.000 -0.035 70.236 28.242 -1.000 0.000 0.000 79.730

For concreteness, first consider the case where the realized return from
date t — 1 to t is given by
L+r+uy (5)

where r; is the exogenous random return given in the third column of the
tables examined above and y; is the purchase of the security as given by the
column in the tables labelled as “Purchases”. This is the purchase dictated
by delta hedging, where the portfolio is required to be rebalanced after the
price change to reflect the new value of the optional delta. Since the trader
maintains a position in the security of delta of the option, the “Purchases”
column reflects the change in the delta from one date to the next.

Table 2 tracks the outcome over time. There are now two columns for
the price sequence. First there is a “Theoretical Price” column that reflects
just the exogenous returns {r;}. But the column marked “Actual Price”
incorporates the selling and buying pressure y; also. At date 0 the starting
price of the security is 100, the delta is —0.2245, so that the trader’s portfolio
at the end of date 0 consists of a short position of 0.2245 units of the security
and a cash balance of 22.45. At the end of week 1, the fundamental return
is —2.26%, which drives down the price to 97.38, as before in Table 1.

However, this is when the downward spiral begins to gather momentum.
The sale at the end of date 1 feeds into the return for week 2. The “funda-
mental” return in week 2 is positive, namely 1.4%. However, this positive
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fundamental return is swamped by the downward pressure on prices exerted
by the sale of 0.0508 units of the security at the end of week 1. The realized
return that combines the fundamental shock and the downward pressure on
price from sales is given by

0.014 — 0.0508 = —0.0368
so that the actual price at the end of week 2 is given by

97.38 x (1 — 0.0368) = 93.79

This compares with the theoretical price of 98.74 that takes account only of
the exogenous return. The potency of the feedback effect then takes a grip
on the price process. With each massive sale in one period, the return in
the subsequent period is depressed, which generates more sales, and so on.

The upshot of the feedback is clear from the price path in Table 2. The
price falls very rapidly from the starting price of 100. By the end of week
4, the price has crashed to 52.13, compared to the theoretical price of 95.62.
The column tracking the delta of the option reflects the rapid price decline.
By the end of week 4, the delta has in effect reached its lower bound of —1.
Once the delta reaches —1, the price of the security remains deep in the
money, and so the delta remains at —1 until the expiry of the option. Since
there is no further change in the delta, there is no trading of the security
either. Figure 4 plots the price paths with and without feedback for the
case where the option ends up in the money.

At expiry, the security’s actual price has crashed to 28.24. The cash
balance of the delta-hedging trader stands at 79.73. Since the trader has a
liability of 1 unit of the security, the equity of the trader is

79.73 — 28.24 = 51.49

Had the trader bought the put option at date 0 at the Black-Scholes price of
2.17, the net position at the time of expiry would have been

90 — 28.24 — 2.17 = 59.59

which is substantially larger than the outcome of the delta hedging. Again,
this is an illustration that when there is feedback, the Black-Scholes formula
is underpricing the put option.

17



120

100 +

80 -

60 - Theoretical Price

— Actual Price

40 -

20 A

01 23456 7 8 9 101112 13 14 15 16 17 18 19 20
Figure 4. Price paths with and without feedback, out of the money case

3 Numerical Simulation of Dynamic Case

Building on the simple example of feedback avove, we now investigate more
systematically the potential underpricing of the option when feedback effects
are neglected.

We will proceed by developing the simple example above by incorporating
not only the price pressure generated by sales and purchases, but we make
the more realistic assumption that the market price reverts back to some
fundamental value after the price shock due to a sale or purchase. In other
words, the price shock due to a sale or purchase is only temporary. Kyle
(1985) has popularized the concept of “resiliency” of the market to describe
such a reversion to the fundamental price.

In addition, we will examine the case where the strike price of the option
to be hedged also shifts, in line with the current market price. This feature
is designed to capture the idea that the hedging strategies put in place by
market participants will closely mirror the current prevailing market price.

Specifically, the simulation is set up as follows. The option expires at
date T', and the remaining time to expiry is T'—¢. Time is measured in units
of one year, as before. At the beginning, the agent decides to dynamically
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replicate a put option, with strike price X set at fraction ¢ of yesterday’s
price, i.e., X = ¢P, rebalancing every dt = 1/365 years, so the agent re—
balances everyday. This means that the agent starts out being fully delta-
hedged. The number of days when the agent does this is denoted by NV, so
at the beginning of the period, T'—t = Ndt. The annual volatility of returns
of the underlying asset is indicated by o.

On the day after the option expires, the agent may decide to repeat the
experience. We indicate the number of times agent does this by Q.

The sequence of agents actions is as follows. We indicate the days by .
Then the sequencing in other numerical simulation is given as follows.

day 1 Price, P, is realized

day 2 1. The strike price X adjusts to X = ¢P;
2. Calculate the option delta As
3. At all times the agent maintains delta position A; in the underly-

ing asset.

day 3 onward The agent recalculates 4;, and depending on whether the
market went up or down, buys or sells. The agent’s repurchase of stock
is Az — Az’—l

In the absence of the agent, the price evolves by Brownian motion,
P= Py (14 rydt + 0Vt 2;) (6)
where
Z; ~ N(0,1)

However, suppose that the set of agents in aggregate who engage in the trade
is large. Therefore, as a group, they exerts a significant price impact with
their purchases. The price impact is denoted by A > 0. The price dynamics
that take account of the impact of sales and purchases modifies (6) so that

In other words, the price change reflects the aggregate sales or purchases of
the agents, which in turn is the change in the delta of the option.

So far, we have examined the analogous case to the simple tabular exam-
ple examined in the previous section. Let us now introduce the feature that,
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after the initial price shock due to the sale or purchase, the market price
reverts back to some fundamental value over time. Therefore, the impact of
the agent’s trading decision will slowly reverse. In the terminology of Kyle
(1985), the market exhibits “resiliency”..

Assume that the price impact of sales and purchases is slowly reversed, at
a constant rate, over F' days. Therefore, at each future day fraction 1/F of
the initial shock (A; — A;_1) reverts. On any given day, price impacts over
many previous days of trading are reverting. We denote the amount that
reverts every day by H;, so

F
1
Hi =4 DA - A )

J=1

Therefore, we need to modify (7) to take this into account, and get

P=P, (1 Frpdt + oVALZ + N (A — Apy) — )\HZ) 8)

This is the form of the price function that we will now examine in our nu-
merical exercise. The pricing function (8) differs from the simple tabular
example above in two ways. First, the strike price of the option being hedged
depends on the current price, rather than being fixed. Second, the price im-
pact of trades is only temporary, and eventually the market reverts back to
fundamental value.

3.1 Simulation

In the simulations reported below, we set the annual volatility at o = 0.25,
the number of time periods at N = 30, the annual risk free rate at ry = 0.05.
The number of days for the price impact to revert was set at /' = 30. The
strike price fraction is ¢ = 0.9, and finally, the price impact factor is set at
A =0.25.

We report two different types of results below. First we present a plot of
a sample price path, where we fix the realization of the shocks and compare
the price paths for A = 0.25 and A = 0. That is, we compare the price paths
with and without the pricing impact of trades. We repeat the exercise four
times, i.e., ) = 4. Since () x N = 90 the simulated price path tracks 90 days
trading. The two price paths are shown in Figure 5.

In order to better understand the distributional properties of the model
where the agent has a significant price impact, along with the resiliency, we
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Figure 5. Effect of endogenous shocks on price path. This figure illustrates the price
paths with and without the price impact of trades for the same realization of fundamentals
shocks. The dotted line is for A = 0.25 with reversion to fundamentals, and the solid line
is the case for A = 0.

Table 3. Volatility and Kurtosis. This table gives the volatility and kurtosis of the
simulated densities where one has price feedback while the other does not. Both volatility
and kurtosis increase substantially with feedback.

Model Volatility Kurtosis
No feedback 1.3 3.0
Resiliency 2.2 15.4

also repeat this = 2,000 times, to get the sample of size () x N = 60, 000
days. These results are reported in Figure 6 and Table 3.

The contrasting price paths in Figure 5 demonstrate the considerable
impact of price feedback on the dynamic path of prices. For some of the
time, the two paths track each other closely, implying that the feedback effect
of trading does not exert much effect. However, following large price moves,
the two paths can diverge quite drastically. Such divergence is confirmation
that the price feedback effects studied in the simple tabular example above
can be shown to exert considerable influence in a more realistic dynamic
setting. Notice also from Figure 5 that even with market resiliency, the
price path with endogenous shocks can stray quite far from the fundamental
value.

The endogenous price paths leave their mark on the distribution of re-
turns, also. In particular, the shape of the density exhibit the typical “fat
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Figure 6. Return density with price feedback. This figure compares the return
density with price feedback (dotted line) and without price feedback (solid line).

tail” shape relative to the normal density. Figure 6 presents the simu-
lated density with endogenous feedback (dotted line) relative to the Gaus-
sian fundamentals-driven returns given by the solid line. We see the typical
tell-tale signs of a more sharply peaked distribution of returns with more
extreme outcomes in the tails. Table 3 confirms both the greater volatility
and the substantially higher kurtosis when the returns incorporate endoge-
nous feedback. The kurtosis goes from 3 to 15.4 as we introduce endogenous
feedback in prices, while volatility goes from 1.3 to 2.2. We see clearly the
effect of feedback. Dynamic trading strategies coupled with endogenous risk
increase overall market risk, whether measured by volatility or kurtosis.

4 Concluding Remarks

This paper has illustrated the possibility of endogenously generated extreme
outcomes when prices play the dual role of both reflecting the underlyng
fundamentals, but also driving the constraints on economic agents’ actions.
The illustration has relied on one type of constraint - the automatic response
to buy and sell that results from the delta hedging strategy. =~ We close
the paper with some remarks on how our general approach can be usefully
employed to address a wider range of market dynamics that rest on the same
spirit of the dual nature of prices.

In Danielsson, Shin and Zigrand (2010), we show how the dual role of
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prices can amplify market risk itself and thereby drive the leverage of finan-
cial intermediaries. The depletion of bank capital and subsequent deleverag-
ing by banks has been a central theme in the discussion of the recent global
financial crisis and its impact on the real economy. Banks maintain enough
equity to meet perceived risks arising from shocks to the value of their asset
holdings. However, such realized risks should itself be considered endoge-
nous, and depend on the ability of banks to take on risky exposures. When
the banking sector suffers depletion of capital due to losses on its assets, its
capacity to take on risky exposures diminishes as the risk constraint tight-
ens. In other words, balance sheet capacity, risk constraints and market risk
premiums should all be determined simultaneously in equilibrium.

Danielsson, Shin and Zigrand (2010) show that it is possible to solve for
the equilibrium in closed form in a dynamic banking model and examine
how balance sheet capacity, volatility and risk premiums are jointly deter-
mined. One key feature of the equilibrium is that risk premiums are high
when banking sector capital is depleted, implying that projects that previ-
ously received funding from the banking sector no longer do so with depleted
capital. This is a result that is reminiscent of a “credit crunch” due to bank-
ing sector losses, and follows from the following confluence of forces. Banks
are risk neutral but their capacity to take on risky exposures is limited by
their capital cushion. As their capital is depleted, their risk constraints bind
harder, and their behavior resembles that of risk-averse investors. Indeed,
the Lagrange multiplier associated with the capital constraint enters into the
banks’ lending decisions just like a risk aversion parameter. As banks suffer
erosion of their capital, equilibrium volatility increases at the same time as
their “as if” risk aversion also increases. This combination of increasing risk
and increased risk aversion leads to a rise in the risk premium in the economy.
The expected returns to risky assets increase, and projects that previously
received funding from the banking sector no longer receives funding.

The fact that risk premiums are determined by aggregate banking sector
capital is very much in line with recent “macroprudential” thinking among
policy makers whose aim is to ensure that banking sector stress tests are in
place to ensure that the banking sector has sufficient capacity to perform its
economic role of channeling funding from savers to borrowers. This is in con-
trast to the previously “microprudential” concern with ensuring that banks
have sufficient capital to serve as a buffer against loss that protects depositors
(and hence the deposit insurance agency) from losses. Whereas micropru-
dential concerns have to do with avoiding fiscal costs (due to bank recapi-
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talization), macroprudential concerns have to do with maintaining banking
sector lending capacity.

More generally, the study of endogenous risk lies at the confluence of two
strands in the literature. One strand is the literature on crisis dynamics in
competitive equilibrium, such as Gennotte and Leland (1990), Geanakoplos
(1997, 2009) and Geanakoplos and Zame (2003). The second strand is the
corporate finance literature that draws insights on balance sheet constraints,
such as Shleifer and Vishny’s (1997) observation that margin constraints limit
the ability of arbitrageurs to exploit price differences, as well as Holmstrom
and Tirole’s (1998) work on debt capacities.

The results in Danielsson, Shin and Zigrand (2010) tie together these
two strands of the literature, and therefore share points of contact with a
recent literature on balance sheet constraints enter as a channel of contagion.
Kiyotaki and Moore (1997) and Gromb and Vayanos (2002) are early papers
in this spirit. Brunnermeier and Pedersen (2009) emphasize the “margin
spirals” that result where capital constraints set off amplified feedback effects.
Garleanu and Pedersen (2009) extend the CAPM by incorporating a capital
constraint to show how assets with the same fundamental risk may trade
at different prices. He and Krishnamurthy (2007) have studied a dynamic
asset pricing model with intermediaries, where the intermediaries’ capital
constraints enter into the asset pricing problem as a determinant of portfolio
capacity. Amplification through wealth effects was studied by Xiong (2001),
Kyle and Xiong (2001) who show that shocks to arbitrageur wealth can
amplify volatility when the arbitrageurs react to price changes by rebalancing
their portfolios.

These studies have focused on the financial market dynamics almost ex-
clusively, rather than on the macroeconomic issues concerned with the impact
of financial shocks on the real economy. The linking of financial dynamics
driven by such constraints and the macroeconomics literature is an important
task that would yield many important insights into business cycles.

24



References

Black, Fisher and Myron Scholes (1973) “The Pricing of Options and Cor-
porate Liabilities” Journal of Political Economy, 1-83.

Bookstaber, Richard (2007) A Demon of our Own Design: Markets, Hedge
Funds and the Perils of Financial Innovation, New York, Wiley

Brady, N. (1988) Report of the Presidential Task Force on Market Mecha-
nisms, Government Printing Office, Washington D. C.

Danielsson, J. (2002) “The Emperor has no Clothes: Limits to Risk Mod-
elling”. 2002 Journal of Banking and Finance, winner of Iddo Sarnat best
paper award.

Danielsson, J. and J.-P. Zigrand (2008) “Equilibrium Asset Pricing with
Systemic Risk”, Economic Theory, 35(2), 293-319.

Adrian, Tobias and Hyun Song Shin (2010) “Liquidity and Leverage,” Jour-
nal of Financial Intermediation 19 (3), 418-437

Barro, Robert, “Rare Disasters and Asset Markets in the Twentieth Cen-
tury,” Quarterly Journal of Economics, 121 (2006), 823-866.

Black, Fischer and Myron Scholes (1973) “The Pricing of Options and Cor-
porate Liabilities,” Journal of Political Economy, 81, 637-654.

Bernardo, Antonio E. and Ivo Welch, (2004) “Financial Market Runs,” Quar-
terly Journal of Economics, 119, 135-158.

Breedon, Francis (2001) “Market Liquidity under Stress: Observations in the
FX Market” paper presented at the BIS workshop on market liquidity
http://www.bis.org/publ/bispap02g.pdf

Brunnermeier, Markus, Stefan Nagel and Lasse Pedersen (2009) ” Carry Trades
and Currency Crashes” NBER Macroeconomics Annual, 2008

Brunnermeier, Markus and Lasse Pedersen (2009) “Market Liquidity and
Funding Liquidity,” Review of Financial Studies, 22, 2201-2238.

25



Burdzy, Krzysztof, David Frankel and Ady Pauzner (2001) ”Fast Equilibrium
Selection by Rational Players Living in a Changing World.,” Econometrica,
68, 163-190.

Burnside, Craig (2010) “Carry Trades and Risk”, working paper, Duke Uni-
versity, December
http://www.duke.edu/ acb8/Carry-trade-risk-122910.pdf

Burnside, Craig, Martin Eichenbaum, Isaac Kleshchelski and Sergio Rebelo
(2006) “The Returns to Currency Speculation” NBER working paper, num-
ber 12489

http://www.nber.org/papers/w12489

Burnside, Craig, Martin Eichenbaum, Isaac Kleshchelski and Sergio Rebelo
(2007) “The Returns to Currency Speculation” American Economic Review
Papers and Proceedings 97(2), 333-8.

Burnside, Craig, Martin Eichenbaum, Isaac Kleshchelski and Sergio Rebelo
(2008) “Do Peso Problems Explain the Returns to the Carry Trade?” Forth-
coming, Review of Financial Studies

Krzysztof Burdzy; David Frankel; Ady Pauzner, ”On the Time and Direction
of Stochastic Bifurcation.” In B. Szyszkowicz, ed. Asymptotic Methods in
Probability and Statistics: A Volume in Honour of Miklos Csorgo. Holland:
Elsevier (1998).

Danielsson, Jon, Hyun Song Shin (2003) “Endogenous Risk” in Modern Risk
Management: A History, Risk Books, 2003

Danielsson, Jon, Hyun Song Shin and Jean-Pierre Zigrand (2010) ”Balance
Sheet Capacity and Endogenous Risk” working paper.

Danielsson, Jon and Jean-Pierre Zigrand (2008) “Equilibrium Asset Pricing
with Systemic Risk”, Economic Theory, 35, 293-319

Embrechts, P., Kuppelberg, C., and Mikosch, T. (1996). Modelling Extremal
Events for Insurance and Finance (Applications of Mathematics). Berlin:
Springer Verlag.

Fama, E. (1965). The behavior of stock-market prices. Journal of Business,
38(1):34-105.

26



Farhi, Emmanuel and Xavier Gabaix (2009) “Rare Disasters and Exchange
Rates”, working paper Haravard University and NYU

Garleanu, Nicolae and Lasse Heje Pedersen (2009) “Margin-Based Asset Pric-
ing and Deviations from the Law of One Price,” working paper.

Geanakoplos, John (1997) “Promises, Promises” In W.B. Arthur, S. Durlauf
and D. Lane (eds.), The Economy as an Evolving Complex System, II. Read-
ing MA: Addison-Wesley, 1997, pp. 285-320.

Geanakoplos, John (2009) “The Leverage Cycle” NBER Macroeconomics
Annual 2009.

Geanakoplos, John and William Zame (2003) ” Liquidity, Default, and Crashes:
Endogenous Contracts in General Equilibrium,” Advances in Economics and
Econometrics: Theory and Applications, Eighth World Conference, Volume
I1, Econometric Society Monographs (2003), pp. 170-205.

Gennotte, Gerard and Hayne Leland (1990) “Hedging and Crashes”, Amer-
ican Economic Review, 999-1021.

Gromb, Denis and Dimitri Vayanos (2002) “Equilibrium and Welfare in Mar-
kets with Financially Constrained Arbitrageurs,” Journal of Financial Eco-
nomics 66, pp. 361-407.

He, Zhiguo and Arvind Krishnamurthy (2007) “Intermediary Asset Pricing,”
Northwestern University.

He, Zhiguo and Wei Xiong (2010) “Dynamic Debt Runs” forthcoming in
Review of Financial Studies

Heston, S. (1993), “A closed-form solution for options with stochastic volatil-

ity with applications to bond and currency options,” Review of Financial
Studies 6, 327-343.

Kiyotaki, N and John Moore (1997) “Credit Cycles” Journal of Political
Economy, 105, 211 - 248

Kyle, A. S. (1985) “Continuous Auctions and Insider Trading” Econometrica,
56, 1315 - 1335.

27



Kyle, A. S. and Xiong, Wei (2001) ”Contagion as a Wealth Effect” Journal
of Finance, 56, 1401 - 1440.

Holmstrom, Bengt, and Jean Tirole (1998) “Private and Public Supply of
Liquidity,” Journal of Political Economy 106, pp. 1-40.

Jansen, D. and de Vries, C. G. (1991). On the frequency of large stock
returns: Putting booms and busts into perspective. Review of Economics
and Statistics, 73:18-24.

Mandelbrot, B. B. (1963). The variation of certain speculative prices. Jour-
nal of Business, 36:392 - 417.

Merton, Robert (1973), “Theory of Rational Option Pricing,” Bell Journal
of Economics and Management Science, 4, 141-183.

Morris, Stephen and Hyun Song Shin (2004) “Liquidity Black Holes” Review
of Finance, 8, 1-18

Pareto, V. (1896). Cours d’Economie Politique. Geneva, Switzerland: Droz.

Rietz, Thomas A., “The Equity Risk Premium: A Solution,” Journal of
Monetary Economics, 22 (1988), 117-131.

Securities and Exchange Commission (2010) Joint Report on the CFTC and
SEC on the Events of May 6, 2010
http://www.sec.gov/news/studies/2010/marketevents-report.pdf

Shin, Hyun Song (2010) Risk and Liquidity, Clarendon Lectures in Finance,
Oxford University Press, Oxford.

Shin, Hyun Song and Jean-Pierre Zigrand (2011),“Feedback Effects and
Changes in the Diversity of Trading Strategies,” Driver Paper written for
the UK Foresight Project on The Future of Computer Trading in Financial
Markets.

Shleifer, Andrei and Robert Vishny (1997) “The Limits of Arbitrage” Journal
of Finance, 52, 35-55.

Weitzman, Martin, “Subjective Expectations and Asset-Return Puzzles,”
American Economic Review,97, (2007), 1102-30.

28



Xiong, Wei (2001) “Convergence Trading with Wealth Effects: An Ampli-
fication Mechanism in Financial Markets”, Journal of Financial Economics
62, 247-292

29



